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Two Papers on Graph Embedding Problems

James B. Saxe

DTIC

January 1980 ELECTE
MARG 1880

® ‘ ' Abstract

This report contains two independent papers on problems concerned with graph
embedding—Il.e., assignment of the vertices of a graph to points in a metric space
subject to specified constraints. The first paper In this report, "Embeddability of
weighted graphs in k-space is strongly NP-hard,® examines the problem of assigning
the vertices of a weighted graph to points in a k-dimensional Euclidean space
subject to the constraint that any two vertices connected by an edge must be
assigned to points whose distance Is the weight ot that edge. We prove (by
reduction from 3-satisflability) that it is NP-hard to determine whether such an
assignment exists, even when k=1 and the edge weights are restricted to take on

the values 1 and 2. The same reduction used in this proof forms the basis of proofs

of the NP-completeness of several variants of the original problem. The second
paper, "Dynamic-programming algorithms for recognizing smali-bandwidth graphs in
polynomial time," deals with the problem of bandwidth minimization, in which we are
given a graph, G, and a positive integer, k, and asked whether it is possible to
assign the vertices of G to distinct integers subject to the constraint that no edge
of G may have Its endpoints mapped to integers which differ by more than k.
Although the general problem has been proven (by C.H. Papadimitriou) to be
NP-complete, we show that it can be solved in polynomial time for any fixed vaiue of
k. As in the first paper, the methods used to achieve the principal resuit are
extended to a number of related problems.

This research was supported In part by the Office of Naval Research under Contract
NOOO14-76-C-0370. ' '
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Embeddability of Weighted Graphs in
k-Space is Strongly NP-Hard

James B. Saxe
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsyivania 15213

Abstract

In this paper we Investigate the complexity of embedding edge-weighted graphs
into Euclidean spaces: Given an (incomplete) edge-weighted graph, G, can the
vertices of G be mapped to points in Euclidean k-space in such a way that any two
vertices connected by an edge are mapped to points whose distance is equal to the
weight of the edge? We prove (by reduction from 3-satisfiability) that this problem
is strongly NP-hard. Indeed, it is NP-complete even when k=1 and the edge weights
are restricted to take on the values 1 and 2. We also Investigate the related
problems of approximate embeddability (In which G is accepted If its vertices can
be embedded In k-space so that the distances between connected vertices match
the corresponding edge weights within some small tolerance but G is rejected If
there is no mapping which meets some other, larger tolerance) and the problem of
amblguous embedding (in which we are given both a graph, G, and an embedding for
G and asked whether a second embedding exists which is not congruent to the
first). We show that these related problems are just as hard as the ordinary
embeddability problem,

This research was supported In part by the Office of Naval Research under Contract
NOOO14-76-C-0370.
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WEIGHTED GRAPH EMBEDODABILITY 1

1. Introduction

in many applications of distributed sensor networks! there arises the problem of
determining the -locatlons of sensors from incomplete (and possibly errorfut)
information about their distances from each other and from fixed landmutb. This
prompts us io ask the following geometric questlohs:

= Given an incompletely specified distance matrix for a set of points In
k-space.2 when s the complete distance matrix uniquely determined?

- Assuming the distance matrix to be uniquely determined, what is the
computational complexity of actually finding the unspecified
distances? : '

In this paper we consider the closely related problem of embéddablll‘_tx:

- Given a (purported) incompletely specified distance matrix for a set of
points in k-space, determine whether there can actually exist a set of
polnts satisfying that matrix.

In Section 2 we introduce definitions that will aliow us to phrase several forms of
the embeddablllty problcm in terms of edoe-welghted graphs. In SQctlon 3. we give
a simple proof that a 1-dimensional version of the embeddabiiity problem is
NP-complete. In Section 4, we show the more difficult and surprising resuit that this
same 1-dimensional problem is strongly NP-complete in the sense of Garey and
Johnson [1979] and extend this resuit to higher dimensions. In Section 5§ we
address some naturally-arising questions concerning the suitability of the Turing
Machine mode! for a probiem that inherently lm)olves real numbers, and show that
the proofs used In Section 4 have relevance to an "approximate embeddaebility®
problem on the reals. In Section 6 we discuss versions of the probiem in which one
way td complete an incompletely specified distance matrix is known and it is desired
to determine whether a secoﬁd solution exists. We show that these versions are no
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2 WEIGHTED GRAPH EMBEDDABILITY

easler than corresponding versions studied earlier in the paper. Finally, the

contributions of the paper are summarized in Section 7.

2. Fundamental Concepts

We begin by introducing the concepts of welghted graph and embedding:

Definitions:
A weighted graph, G = (V,EW), Is an ordered triple such that each element of
E Is an unordered pair of distinct elements of V and W is a function mapping E
into [0,00). The elements of V are called the vertices of G. The elements of E
are called the edges of G. For each edge, e, of G, the real number W(e) Is
called the weight of e in G (or simply the weight of e).

Definitions:
Let G = <V,E,\W)> be a welghted graph, and let k be a positive integer. Then an’
embedding of G In k-space is a function, f, mapping V Into the k-dimensional
Euclidean space, RK, such that, for each edge, e = {v,w), of G, |f(v)-f(w)| =
WwW(e). G is said to be embeddable In k-space, or k-embeddable, iff there
. exists an embedding of G in k-space. :

For any positive integer, k, the problem of k-embeddability may now be stated as

follows:

Problem (k-Embeddability): .
Given an arbitrary welighted graph, G, determine whether G Is k-embeddable.

In Sections 3 and ‘4 we Will wish to restrict the class of weighted graphs under
consideration, so that the notion of NP-compieteness (which is defined in terms of
Turing machines) will make sense in relation to Embeddability. We therefore

introduce the follleng definition.

Definition:
Let S be any subset of [0,00). Then, an S-weighted graph is a weighted graph,
G, such that the welght of each edge of G is an element of S. We will
generally refer to Z*-weighted graphs as integer-weighted graphs.
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in Section 5 we will return to the question of graphs with real edge weights.

3. The Weak NP-completeness of 1-Embeddability

in this section, we demonstrate the weak NP-completeness of the problem of
1-Embeddability of integer-weighted graphs. To do this, we first show
constructively that 1-Embeddability is in NP. We then use a reduction from
, Partition3 to show completeness. | '

Theorem 3.1:
1-Embeddability of integer-weighted graphs Is in NP,

Proof: .
To check the 1-embeddability of any integer-weighted graph, a NDTM need
only

1. Partition the graph into disjoint connected subgraphs,
2. Guess the direction of each edge of the graph, and
3. Check the consistency of each disjoint connected subgraph.

These operations can clearly be carried out in (nondeterministic) polynomial
time. O ’

Theorem 3.2:
1-Embeddabllity of integer-weighted graphs is NP-complete.

Proot:4 : : '
We will show the NP-completeness of 1-Embeddablility by reduction from

Partition. Let S = {a4q, a5, ..., 8,)} be a muitiset of positive integers. In
polynomia! time we may construct from S a description of the cyclic graph

3he Partition problem calis for partitioning & (mwiti-)set of integers imo two subsets with equal sums, and is
known to be NP-complete; see Garey and Johnson [1979]).

‘Tho Mm:m used in this theorem and that used in the proof of Lemma 4.4 were independently developed
by Yemini [1978], who used them to show the (wesk) NP-compieteness of 2-Embeddabitity of integer-weighted
graphs.

- ey




WEIGHTED GRAPH EMBEDDABILITY

G = <V,E,W> whose edge weights are the a;, that s
Ve {vg,:..1 Va1 h
Es= {(Vi,\l(l*«‘ mod n)) ' OSKH). and
W = {({ViV(i+1 mod n)}.8}) | O<i<n}.

If fis an embedding of G in the line, then the muitisets

Sq = {a) | 1v}) <Hv(141 mod n))} and

S2 = {81 1(v)) > V(141 mod n))}
constitute a partition of S Into two pieces whose sums are equal. Similarly,
any such partition of S yields a 1-Embedding of G. O

| 4. The Strong NP-completeness of 1-Embeddability

We now come to our key theorem, which asserts that the problem of determining
whether an integer-weighted graph is embeddable in the line remains NP-complete

i even if the edge weights are restricted to be no greater than four.

_ Theorem 4.1 .
L - 1-Embeddability of {1,2,3,4)-weighted graphs is NP-complete.

Proof:
Qur proof consists ot a reduction from 3-Satisftabiﬁty {which was shown 1o be
NP-complete by Cook [1971]) to 1-Embeddability of {1,2,3,4)-weighted
graphs. Let E be any Boolean expression in conjunctive normal form with three
~ Niterals in each clause. Our goal will be to construct a {1,2,3,4}-weighted
graph, G, which is embeddable Iff E is satisfiable. We let n be the number of
variables occurring in € and m be the number of clauses in E. Throughout this
proof, we will use the convention that the variables of € will be Indexed by "i"
(which will therefore range from 1 through n), the clauses of E will be indexed
; , by "J* (ranging from 1 through m), and the literals within each clause will be
. : . indexed by "k" (ranging from 1 through 3). Thus E has the form

e= I c,
[l 15<m
| where each clause, Cj. has the form

¢r 2 by
15ks




WEIGHTED GRAPH EMBEDOABILITY

and each literal, L; ., has the form
L].k s X| or Llok 8 5(,
for some i, 1<i<n. We will aiso use throughout the proof the convention that

"f" represents a hypothetical 1-embedding of G (or of the part of G we have
canstructed so far).

To construct G, we will use the "building blocks" shown in Figure 4.1, We
begin with the subgraph shown in Figure 4.1(a). We assume without loss of
generality that f(A) = 0 and f(B) = 2. This assumption constrains f to assign
each of the X; (which we identify with the variables of E) to 1 or -1 (which we
Identify with the Boolean values TRUE and FALSE, respectively). Note that
each possible mapping of the X; into {1,-1) corresponds to some assignment of
truth values to the X;. In the remaining steps of the construction, we wiil add
edges which have precisely the effect of constraining f to map the X; to
{1,-1} in such a way that the corresponding assignment of the X; satisfies E.

The next step in our construction is to augment G by adding the edges shown
in Figure 4.1(b) for each i, 1Si¢n. The heavy lines in that figure represent
already-existing edges. We now have vertices X| such that for each variable,
Xj, f maps X; to 1 (TRUE) Iff it maps R to -1 (FALSE), and vice-versa. The
possible mappings from (x,}u{xl} to {1,-1} under f now correspond precisely
to the possible (consistent) truth assignments of the X; and 5(,. but still without
regard to whether those assignments satisfy E.

For the final step of our construction, we add the edges indicated in Figure -
4.1(c) for each j, 1Sjsm. The vertices L;  are identified with the X; and R
precisely as the corresponding literals, Lj.k’ are formally Identical with the Xy
- and 5(.. Once again, the heavy lines indicate edges which were present at
earlier stages of the construction. Careful study of the graph in Figure 4.1{c)
will reveal that it is impossible to embed it in the line In such a way that A Is
sent to O, B is sent to 2, and all three of the Ljk are sent to -1 (FALSE), but If
one or more of the '-j,k are to be sent to 1 (TRUE), then an embedding Is
possible (in fact, exactly one such embedding is possible). Thus, for each }J,
1<jSm, the effect of the edges In Figure 4.1(c) is precisely to constrain f to
map the X; to (1,1} in such a way that the corresponding truth assignment for
the X; satisfies clause ¢

The effect of all the edges of G is therefore to constrain f to mep the X; to
{1,~1} in such a way that the corresponding assignment of truth values to the
X, satisfies E. If there is no such assignment then G is not 1-embeddable. If




e

e

X, Xz....xn

(a) Implementation of variables. (b) Implementation of a negative literal.

B et S ——

(c) Implementation of a disjunctive claues.

Figure 4.1 Building blocks for transforming an expression in 3-CNF to a graph.

there are any assignments satisfying E, then for each such assignment G can i
be (uniquely) 1-embedded by a function sending A to O and B to 2 and }
mapping the X; to {1,-1} in accordance with that assignment. Finalily, It is B j
clear that the preceding construction can be carried out In polynomial time. 2
This completes the proof. O

For future reference, we note that the con_structloh used In the preceding proof is

b {
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such that the 1-embeddings of G are in one-to-one correspondence (up to
translation and reflection) with the truth assignments that satisfy E. We note also
that the preceding theorem immediately yields the following result:

Corollary 4.2:
1-Embeddability of integer-weighted graphs is strongly NP-complete.

Proof:5
It suffices to note that transiation of a sequence of numbers In {1,2,3,4) from
binary to unary can be accomplished in linear time and causes only & constant
. factor increase in the length of the input. O

We may aiso immediately derive:

Corollary 4.3:
1-Embeddability of {1,2}-weighted graphs Is NP-complete.

Proof:
Consider the graphs shown in Figure 4.2. By replacing edges of weights 3 and
4 with configurations Ty and T4, respectively, we can reduce any
{1,2,3,4}-weighted graph, G, to a (1,2}-weighted graph, H, that Is
1-embeddable ift G Is 1-embeddable. O
2 2

Y pe

Figure 4.2. Building long "edges” from short edges.

In fact, for any positive integer, k, the graph H so constructed will be k-embeddable

Sanother NP-complete problem involving 3 form of graph embedding is the Bandwidth Minimization Problem (see
Papadimitriou [1976]). In Appendix | we exhibit a reduction from Bandwidth Minimization to Embeddability. That
reduction sutfices to show the strong NP-completeness of 1-Embeddability of integer-weighted graphs, although it
is somewhat less economical than the construction given in Theorem 4.1. Aiso, it cannot be used as a basis for
deriving the results presented in Sections 5 and 6.
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iff G Is k-embeddable. We may use this fact to prove our next lemma.

4 8

% 5
1 Rf 3| 8 Ry 3

F )
H
(81}

4 8

(LI 3 )]
-3
p-1
($2}

Figure 4.3. Gadgets for adding a dimenslon.

Lemma 4.4: '
For every positive integer, k, k-Embeddability of {1,2)}-welghted graphs is
NP-hard. ’

Proof:

Consider the graphs shown in Figure 4.3. Given any {1,2}-weighted graph, G,
each edge of G having weight 1 may be replaced by the R4y and each edge of
weighf 2 by Ry, ylelding a graph, H, which, for any positive integer, k, Is .
embeddable in (k+1)-space iff G is embeddable in k-space. By the methods of
Theorem 4.3, H may be transformed into a {1,2}-weighted graph, J, that Is
embeddable in precisely those spaces in which H Is embeddable. The
transformation from G to J involves only a constant factor increase In the
length of a specification of the graph and can clearly be accomplished In
polynomial time. It follows by mathematical Induction that, for any positive
integer, k, 1-Embeddability s polynomial-time reducible to k-Embeddability for
{1,2)-weighted graphs. O

Once again, we note that the (k+1)-embeddings of J will be In one-to-one
correspondence (up to translation, rotation and reflection) with the k-embeddings of

G. Finally, Theorem 4.4 gives us the following resulit.

Corollary 4.5:
Let k be any positive integer. Then k-Embeddablility of Integer-weighted

graphs Is strongly NP-hard.

Proof: : .
This resuit follows from Lemma 4.4 and the same reasoning used In the proof of é
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Corollary 4.2. O

6. Graphs with Real-Valued Edge Weights

We will now discuss the applicability of NP-completeness to problems whose
inputs are real numbers In general, and to embedding problems in particular. A
number of reasons for doubting the relevance of the Turing Machine model seem
naturally to present themselves.

= NP-completeness Is defined for language recognition problems on

Turing Machines, which inherently can deal only with integers and not
with arbitrary reals.

- Given a "random" embedding of an unweighted graph into a Euclidean
space, any two of the edge weights induced by the embedding will be
Incommensurable with probability 1. Moreover, If the graph Is
overconstrained and the dimension of the space Is at least two, then
rounding the induced edge-weights to muitiples of some small distance
will almost aiways produce a weighted graph that is not embeddable In
the space.

in order to deal with these issues, we introduce the notion of approximate
embeddings. ‘

Definitions.

Let G be a weighted graph and ¢ be a non-negative real number. Then an

¢-approximate k-embedding of G is a function, f, that maps the vertices of G
into Euclidean k-space such that for every edge, {uv), of G,

1-¢ < [f(u)-f(v)|/W({u,v}) < 1+¢. If such an embedding exists, then G is said to
be ¢-approximately k-embeddable.

Given a positive integer, k, and two reals, ¢; and €5, such that 0 S ¢4 < €3, we may
now define the following more "robust" embeddability problem:

Problem (¢ 4,6x-Approximate k-Embeddability):
Given a weighted graph, G, assert correctly either (1) that G is

€x-approximately k-embeddable (this is called accepting G) or (2) that G is not
¢4 -approximately k-embeddable (this is called rejecting G).
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Note that if the least ¢ for which G is ¢-approximately k-Embeddable lies in the
interval (¢4,65], then it Is permissible either to accept or to reject G. In this problem
definition, we have attempted to capture, without introducing inordinately many
complexities of detall, the essential probiem of embedding as it would apply to real

computers glveﬁ inexact data.

We now wish to investigate the computational complexity of €1.€o-Approximate
- Embeddability problems. Is it possible, for example, to solve all such problems where

€4 Is strictly less than ¢, in time polynomial in the size of a specification of G (where
the degree of the polynomial, or even just the "constant" factor, depends on

(e-¢4)"1)?

it turns out that such polynomial solutions are not possible in the general case

(assuming that P # NP). In particular, we have the following resuit.

Theorem S.1:
Let ¢; and ¢y be real numbers such that 05 ¢ < € < 1/8. Then

€4,62-Approximate 1-Embeddability of integer-weighted graphs Is NP-complete.

Proof:
We note that the embeddability properties of the graphs used In the proof of
Theorem 4.1 depend only on cycles of length no greater than 16 having edges
whose'lengths are multiples of 1. It follows from this that, for any ¢ < 1/8, any
such graph is ¢-approximately 1-embeddable iff it is (exactly) 1-embeddable,
and the desired result is at hand. O

it is interesting to examine Theorem 5.1 to see just what it is saying in terms of

language recognition. For each non-negative real number, ¢, let L be the language

consisting of all descriptions (in some agreed-upon form) of e¢-approximately

1-embeddable integer-weighted graphs. For each ¢ in the Interval [0,1/8), the
language L¢ Is a superset of Ly and a strict subset of Ly,g. There are also many

other languages which contain Ly and are contained in Le for some ¢ < 1/8, but

which are not equal to L for any ¢. Theorem 5.1 says that every one of these

G
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languages Is strongly NP-hard.

It is interesting to note that Approximate 1-Embeddability probiems restricted to

graphs consisting of a single cycle (such as were used in the proof of Theorem 3.2)
are always solvable in polynomial time if ey is positive.6 This shows that the weak

NP-completeness result given In Section 3 does not say all there was to say about
the difficulty of the practical (/.e., with inexact data, etc.) form ot the problem.
Loosely speaking, we could say that we have shown the notion of strong vs. weeak
NP-completeness to be significant even for problems that naturally invoive reals
rather than integers. it should be noted, however, that Theorem 5.1 followed not
from Theorem 4.4 but rather from the particular construction used in the proof of
-Theorem 4.4,

The proof of Theorem 5.1 depended on the fact that, for sufficiently small ¢,

¢-approximate 1-embeddability is equivalent to ordinary 1-embeddability for the
class of weighted graphs we constructed in our proof of Theorem 4.1. By m&klﬁg
this same observation regarding approximate k-embeddability of the weighted
graphs constructed in the proof of Theorem 4.4, we arrive at the following resuit.

Theorem 5.2:

' Let k be any positive integer. Then there exists a positive real number, ¢,
such that O,¢-Approximate k-Embeddability of Integer-welghted graphs s
NP-hard. _ :

Proof:
The argument is outlined in the above text. Details are left to the reader. O

It has aiso been  pointed out” that €q,¢x-Approximate k-Embeddabiiity of

SThis follows from the existence of fast approximation algorithms for Partition. See, for example, Lawter
[1977).

7Tho author regretfully cannot recall which participant at the 1979 Allerton conference mede this observationy
he is willing and sager to accept reminders or clues.
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integer-weighted graphs is In NP8 whenever €2 > ¢q. This may be seen by
considering an algorithm which nondeterministically assigns vertices to points in
k-space whose coordinates must all be multiples of (ez-q)lk' 2

6. Ambiguous Embedding Probiems

Another variation on the embeddability problem that may arise in practical
applications is that of "ambiguity of solution." Given an incomplete weighted graph
and some embedding of that graph into a Euclidean space, we may wish to know
whether the given embedding Is unique. For example, are the nodes of our sgnsor
network really where we think they are, or might they be in some very different
configuration? To pose the problem more precisely, we introduce the following
definitions.

Definitions:
let G be a weighted graph and k be a positive integer. Then two
k-embeddings; f and g, of G are said to be congruent iff for each two vertices,
u and v, of G, [f(u)-f(v)| = [g(u)-g(v)]. A k-embedding, f, of G Is said to be
unique (up to congruence) iff every k-embedding of G is congruent to f, and in
this case G is said to be uniquely k-embeddable. If G has two or more
non-congruent k-embeddings, then G is ambiguously k-embeddable.

For any positive integer, k, we may now define the problem of Ambiguous

k-Embedding as follows:

Problem (Ambiguous k-Embedding):
Given a weighted graph, G, and a k-embedding, f, of G, determine whether G is
ambiguously k-embeddable (/.e., whether there exists a k-embedding of G
which is not congruent to f).

in this section, we will show that the Ambiguous Embedding problems defined
above are )Just as hard as the ordinary Embeddability problems we studied in

. ’smctly speaking, at least one language inchding all descriptions of €,-approximately k-embeddable

imteger-woighted graphs and containing only descriptions of tz-npproxim!ely k-embeddable integer-weighted
graphs is in NP,
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Sections 2 through 4. The methods we wilt use are of general interest in that they
are potentially applicabie to "ambiguous" versions of many other NP-complete

problems.

We will begin by formalizing the idea of "ambiguous” versions of problems. Since
we hope that the methods of this section will find more widespread application, we
will work in a more general setting than is necessary for the task at hand. For this
same reason, our presentation of these ideas will be somewhat more formal and

more attentive to mathematical fine points than it would be otherwise.

For the purpose of relating a problem, X, to the language classes P and NP, we
normally phrase X as a recognition problem; we identify X with a language, L, such
that we may ask whether any instance, |, of X Is in L. We are concerned here with
cases in which the defining property of L is that | is In L Iff there exists some
object, O, such that P(1,0), for some fixed predicate, P, which we call a def/ning
predicate for X2 In such a case, we refer to an O such that P(1,0) as a solution
of |.

We sometimes wish td regard two solutions of (an instance of) a problem as
essentially the samé even if they are not act'ually identical. We may do this by
introducing an eqdlvajlence relation, ¥, on the space of potential solutions. Note that
8 must be such that if 0 x O’ then for any problem instance, 1, P(1,0) itf P(1,0'); such
an equivalence relation is said to respect the pfedicate P. Given a problem, X,
- defined by a predicate, P, and given an equivalence relation, 5, which respects P,
we may define an "ambiguous” version of X as follows:

Problem (Ambiguous X up to ):
Given an instance, !, of X and a solution, O, of |, dgtem&m whether there
exists a solution, ', of | such that 0'¥0.

Note that the problem of Ambiguous k-Embedding defined above may now be

OFor example, if X is the problem of 1-Embeddability of integer-weighted graphs, then an instance, |, of X is &
description of an integer-weighted graph; the language, L, consists of all descriptions of t-embeddable
integer-weighted graphs; and the predicate, P, might be defined so that P(1,0) is TRUE itt O is & 1-embedding of
the integer-waighted graph descrided by |,
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described as "Ambiguous k-Embeddability up to congruence." A subtie point which
may have escaped the reader’'s attention Is that different predicates may deflne
the same language.‘o and the definition of "Ambiguous X up to ®* depends on the
defining predicate, P, as well as on . In the text below, the intended P should

always be clear from context.

When we speak of "Ambiguous X" (without mention of any #), for some previously
defined X, we will mean "Ambiguous X with respect to equality." Following this
convention, we can embark on the path to showing the NP-hardness of Ambiguous
k-Embedding problems, by defining the problems of Ambiguous 3-Satisfiability and
Ambiguous 4-Satisfiability as follows: '

" Problems (Ambiguous 3-(4-)Satisfiability):
Given an expression, E, in 3-CNF (resp. 4-CNF) and an assignment of truth
values for the variables of E which satisfies E, determine whether there exists
any other assignment which satisfies E.

Lemma 6.1:
Ambiguous 4-Satisfiability is NP-complete.

Proof:
We will proceed by reduction from 3-Satisfiability. Consider an expression, E,
in 3-CNF with variables X,..,Xy and clauses Cq,..,.Cy. We introduce a new
variable, Y, and define a function, F.on Y and the X; as follows:

F=(YA X;) v (YAE
( 1];_L_N.) (YAE)

= (Yv I[ X) A (YVE)

I[ (FvX) A ![ (chj)

w‘l‘his fact is used to great advantage in the recent work on fast probabilistic tests for primality (see, for
example, Rabin [1976]). B8riefly, the usual defining predicate for the problem of Compositeness (given a positive
ineger, |, is | composite?) is given by P(,0) = O is an integer divisor of | such that 1<O<I. Unfortunately, by this
definition solutions for a given instance may be very rare and hard 10 find, 88 in the case where | is the product of
two large primes. The fast probabilislic 1osts rely on other “delining® predicates tor culponlmu for which
solutions (called 'wnnessu" in the literature) are guaranieed to be common,
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Note that F may be satisfied by assigning the value TRUE to Y and to all the X;.
Any other assignment can satisfy F iff it makes Y FALSE and assigns truth
values to the X, in a way that satisfies E. Finally, it is clear that a 4-CNF
expression for F can be constructed from E in polynomial time. OJ

Lemma 6.2:
Ambiguous 3-8atisﬂablllty is NP-complete.

Proof:

_—We will show a polynomial-time reduction from Ambiguous 4-Satisfiability to
Ambiguous 3-Satisfiability. Consider any expression, E, in 4-CNF. For each
clause, Cl s L].1+L].2+Lj.3"'j.4 {where Lj." L],Z' Lj's. and L].4 are literals of
E), of E we Introduce a new variable, Qj. and define C] as the following
conjunction of clauses:

Cj = (L, VLj,2vap A (LyaVijavap A (Lavievay A
([1'3 v tj'4 v Qj) A (Lj’a VL4V 6})

Note that for each assignment of truth values to Ll-1' I.j'z. '-j.a- and L‘.4 such
that C; is satisfled there i3 exactly one assignment for Q] such that CI is
satistied.!! We define E’ as the conjunction of all the C}. It follows. that for
each assignment, A, to the variables, X;, of E which satisfies E there Is exactly
one assignment, B, of the Q; such that E' is satisfied by AUB. Finally, it is
clear that.E' and B can be computed in polynomial time from € and A. O

in the previous proof, we reduced Ambiguocus 4-Satisfiabllity to Ambiguous
3-Satisflabllity by exhibiting a reduction from ordinary 4-Satisfiability to ordinary
3-Satistiabllity in such a way that there exists a polynomial-time-computable 1-1
correspondence between the solutions (/.e., satistying assignments) of instance of
4-Satisfiability (/.e., 'an expression In 4-CNF) and the solutions of the Inatance of
3-Satisfiability to which It is reduced. We may generalize this technique by defining

"mwm.5-vnuuomupmumuci(mo,umﬁmmm)mmnm«
muuﬂlonMme

et i
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the concept of a solution-preserving reduction:

Definitions:
Let X and Y be problems defined by predicates Px and Py, respectively, and
let =y and =y be equivalence relations respecting Py and Py respectively.
Then a reduction from X to Y is a polynomiai-time function from instances of X

to instances of Y such that for any instance, Iy of X, solutions for f(iy) exist '

Iff solutions for Iy exist. A reduction is said to be solution-preserving from =y
up to =y if there exists a 1-1 function, G, sending equivalence classes under
¥y to equivalence classes under ®y and having the following properties:

1. For any instance, Iy, of X, the restriction of G to the set of all
equivalence classes whose elements are solutions to Ix is onto

the set of aill equivalence classes whose elements are solutions
to f(lx).

2. There exists a polynomial-time computable function, g, such that,
for any instance, Iy, of X and any12 solution, O, of 1y,

g(1,0) € G([O]),

where [0] Is the equivalence class (under %x) of which O Is a
representative.

We may now state a lemma which will be of use in proving the NP-hardness of the

"ambiguous” versions of various problems.

Lemma 6.3: : :
Let X and Y be problems defined by predicates Py and Py, respectively, and
let ¥y and #y be equivalence relations which respect Py and Py, respectively,
Let f be a reduction from X to Y which is solution-preserving from 8y up to &y.

Suppose that Ambiguous Y up to sy is NP-hard. Then Ambiguous X up to sy is
NP<-hard.

2p1gas0 go back and finish reading the definition before looking at this footnote. There is a sublle point being
glossed over here, The function g must operate on represeniations of solutions rather than actual solutions, and
not all solutions will necessarily be representable (for example, any weighted graph of three vertices and two
edges has uncountably many 2-embeddings which are distinct wilh respect to congruence). Note that the definition
of "Ambiguous X up to !x' depends on the selection of some scheme for representing solutlions 10 instances of X,
We only require g(1,0) to be defined in the case that O is representable under the chosen scheme.
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Proof:
Produce functions G and g as given by the preceding definition. We note that
any instance, (lyx,0x) of Ambiguous X up to #x can be reduced in polynomlal
time to (ly,Oy), where Iy = f(Ix) and Oy = g(Ix,0x). Moreover Iy has solutions
which are not equivalent to Oy under sy Iff Ix has solutions which are not
equivalent to Oy under sy, O . !

Observe that our proot of Lemma 6.2 depends simply on the fact that the

" transformation from E to E' is a reduction from 4-Satisfiability to 3-Satisfiability 1
which Is solution-preserving from equality up to equality. We now employ Lemma 6.3
to show the results claimed at the beginning of this section.

Theorem 6.4:
Ambiguous 1-Embedding of {1,2}-weighted graphs is NP-complete and
Ambiguous k-Embedding of {1,2}-weighted graphs is NP-hard for any positive
integer k.

Proof:
This result Is a consequence by Lemma 6.3 of the following easily verified
facts:

1.The reduction used in the proof of Theorem 4.1 is
' solution-preserving from equality up to congruence In 1-space.

2. For any positive integer, k, the reduction used in the proof of
‘Corollary 4.3 is solution preserving from congruence in k-space
up to congruence in k-space.

-3. For any positive integer, k, the reduction used in the proof of

Lemma 4.4 is solution preserving from congruence in k-space up
to congruence in (k+1)-space.

a

Corollary 6.5: 1
Ambiguous 1-Embedding of integer-welghted graphs is strongly NP-complete 1
and Ambiguous k-Embedding of integer-weighted graphs is strongty NP-hard for

any positive lnteg_er..k.
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Proof:

) Tflvlal ‘rom Theorem 6.4. O

7. Conclusions

The resuits of this paper fall into two classes, those of interest to persons
concerned with embedding problems (such as the sensor positioning problem) and
those that are of more general theoretical interest. To tho$e concerned with finding
efficlent solutions to the Embedding problem (given a weighted graph, find "the"
embedding), these results say what all NP-completeness results say: "You are
trying to solve the wrong problem." Ralher than looking for an efficient worst-case
algorithm, it would be more promising to seek an algorithm that gives good
performance in cases which arise in practice (for example, cases in which the graph
is highly overconstrained). Pursuing this topic, we present in Appendix Il a
linear-time algorithm for determining whether any complete graph is k-embeddable
(for any fixed k). Some other positive resuits are given by Yemini [1878].

The most specific result of theoretical interest is our discovery of some new
strongly NP-hard geometric problems, and our use of some interesting gadgéts to
carry out the proofs of NP-hardness. Of more general interest are the two new
ciasses of problems introduced in Sections § and 6. The "61.62-approxlmate"
- problems introduced in Section 5 offer a new way of looking at the notion of
NP-completeness in the context of problems involving continuous variables. As we
have seen, weak NP-completeness may not say all there. is to say in this context.
*Ambiguous solution" probiems address the question of determlning whether a known
solution to a problem is in fact the unique solution. In Section 8, we exhibited a
fundamental NP-complete probiem, 3-Satisfiability, whose ambiguous version is élso
NP-compiete, and exhibited a method for obtaining new NP-completeness results for
"ambiguous" versions of other problems, namely the use of reductions that preserve
uniqueness of solution.
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Appendix I: Reduction from Bandwidth Minimization

in this appendix we give a second proof of Theorem 4.2, using a reduction from
the problem of Bandwidth Minimization.

Definitions:
Let G be a graph with vertex set V, and let N = [V|. A layout of G is a
one-to-one mapping, f, from V onto {1,..,N}. The bandwidth of f is defined as
the maximum distance between the images under f of any two vertices that
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are connected by an edge of G. That is,

bandwidth(f) = max{]f(u)-f(v)] | {u,v} is an edge of G).
The bandwidth of G is defined as the least possible bandwidth for any layout
of G. Thus,

Bandwidth(G) = min{bandwidth(f) | f is a layout of G}.

Problem (Bandwidth Minimization):
Given an arbitrary graph, G, and a positive integer, k, determine whether

Bandwidth(G) £ k.

Bandwidth Minimization was shown to be NP-complete by Papadimitriou [1978].

Using this result, we can give a second proof of the following theorem:

Theorem 1.1 (Corollary 4.2):
1-Embeddability of integer-weighted graphs Is strongly NP-complete.

(Second) Proof:
We will proceed by reduction from Bandwidth Minimization. Let G be a graph of
N vertices, and let k be a positive integer. We assume without loss of
generality that k £ N. We now construct an edge-weighted graph, G’, as

foliows:

1. For each vertex, v, of G, let there be a distinct vertex, v', of G'.
G’ wiill also have some additional vertices as required by the
remaining steps of the construction.

2. For each edge, {u,v}, of G, connect u' and v' by a chain of k
edges, one (it doesn't matter which) having weight (k+1)/2 and
the rest having weight 1/2.

3. For each two vertices, u and v, of G which are not connected by
an edge of G, connect u’ and v' by a chain of N-1 edges, one
having weight N/2 and the rest having weight 1/2.

Note that for any bandwidth £ k layout, f, of G, there exists at least one
i 1-embedding, f', of G' such that f'(v') = f(v) for every vertex, v, of G. Similarly
from every 1-embedding of G' we can derive a bandwidth £ k layout of G. If
we now double the weights of all the edges of G, we get an integer-weighted
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graph, G”, having the following properties:

1. G" is 1-embeddable iff G has a layout of bandwidth € k and

2. A representation of G" with all edge weights given In unary has
size polynomial in the size of a representation of G, and can be
computed from a representation of G in polynomial time.

This complétes the proof. O

It Is interesting to note that this construction can not be used as a basis for the
results of Sections 5 and 6. This underscores our earlier rémark that the proof of
Theorem 5.1 relies not simply on the strong NP-completeness of 1-Embeddability of
integer-weighted graphs, but on the particular construction used in the proof of
Theorem 4.1,

Appendix lI: Embeddability of Complete Graphs

In this appendix, we exhibit a class of polynomial-time algorithms due to Shamos
[1978] for testing the k-embeddability of complete weighted graphs. For purposes
of eprsitlon. we assume a model in which real numbers are primitive data objects
on which exact arithmetic operations (including comparisons and extraction of
square roots) can be performed in constant time. Within this model, we have the

following resuit.

Theorem iI.1:
Let k be any positive integer. Then there exists an algorithm for testing the
k-Embeddability of complete weighted graphs which runs in time linear in the
number of edges (or, equivalently, quadratic in the number of vertices) of the
graph being tested.

Proof:
Let G = <V,.E,W)> be a complete weighted graph with N vertices, X4,...Xy. To
test the embeddability of G, we wiil attempt to position successively the
vertices of G in a (k+1)-dimensional coordinate space. Without loss of
generality, we may send X, to the origin and X5 to (W(({X4,X2}),0,...,0). For
each M, 1SM<N, we define
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D(M) = min {j | the complete weighted graph on {X|1<iSM} induced
from G is j-embeddable}.

If the induced weighted graph on {Xq...Xpy} Is not j-embeddable for any },
then D(M) is undefined. For each j, 0<j<k, we define
P(j) = min (M | D(M) = j}.

If there is no M such that D(M) = j, then P()} is undefined. Note that if P(}]) is
well defined, then P(0),...,P(}) are all defined and distinct. As we locate each
vertex, we enforce the restriction that at most the first D(M) coordinates of
Xpm may be non-zero. By following this rule, we guarantee that after the Xy,
has been located (if this is possible), we will know the value of D(M) and of
P(0),....,P(D(M)). The procedure for locating the Xp,q (for 1SMCN) Is as
follows:

1. Note that there is at most one possible location for Xy, 4 which
will satisfy the following criteria:

- The correct weights are induced for the D(M)+1 edges
(XP(j).xM¢1}. OSjSD(M).

- At most the first D(M)+1 coordinates of the location are .
non-zero. ' : i

- The (D(M)+1)-st coordinate of the Ilocation s
non-negative.

This location, if it exists, may be discovered in constant time,
since we will a!ways have D(M) £ k.

2.1f there are no such locations, or if the (k+1)-st coordinate of the
unique location satisfying the criteria is non-zero, halt asserting
that G is not k-embeddable. Otherwise, without loss of
generality, assign Xp,q to the unique location satistying the
criteria.

3. Check that the weights induced for the remaining (X, Xp:41)
(where 1£i€M and i#P(]) for any ]) are correct. If any are not,
then halt asserting that G is not k-embeddable. Note that the
time for this step.is O(N), since we always have M < N.

If we manage to place all the vertices without discovering that G Is not i
k-embeddable, then we will have found a k-embedding for G (and this
embedding is unique up to congruence). In any case, the time required is linear
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in the number of edges and the space will be linear in the number of vertices.
a

It may be noted that the algorithm given here will not only work for complete
weighted graphs, but may be generalized to apply to a large class of Incomplete
weighted graphs as well; it is only necessary that it be possible to order the
vertices such that, when we attempt to locate the vertices in order, each vertex is
connected to sufficiently many previously-located vertices that the new vertex can
be assigned a unique location without loss of generality. To see the limits of this
generalization, however, we need only consider the graph shown in Figure Il.1. If
the vertices cf this graph are assigned to points in the plane in such a way that no
three are colinear, then a set of edgé weights will be induced which make the graph
uniguely 2-embeddable. But if any vertéx is removed, the weighted subgraph
_ Induced on the remaining five vertices will have infinitely many non-congruent

2-embeddings.

Figure 1l.1 A uniquely embeddable graph with no triangles.

Further explorations in this direction would take us beyond the scope of this
paper. Yemini [1978] exhibits a number of interesting "counterexamples® of the
flavor of Figure Il.1. We aiso leave untouched the issues of numerical stability

which arise when the preceding algorithm Is performed with inexact arithmetic, and

possibly on inexact data.
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Abstract

In this paper we investigate the problem of testing the bandwidth of a graph:
Glven a graph, G, can the vertices of G be mapped to distinct positive integers so
that no edge of G has its endpoints mapped to integers which differ by more than
some fixed constant, k? We exhibit an algorithm to solve this problem In
O(f(k)Nk”) time, where N is the number of vertices of G and f(k) depends only on k.
This result implies that the "Bandwidthg k" problem is not NP-Complete (unless
P = NP) for any fixed k, answering an open question of Garey, Graham, Johnson, and
Knuth. We also show how the algorithm can be modified to solve some other
problems closely related to the "Bandwidth Z k* problem.
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1 Introduction

The subject of this paper is the computational complexity of a problem on graphes.
To speak precisely of the problem, we will need the following notation and
definitions.

Notation:
Let v and v be vertices of a graph G. We will say "u—v In G" to denote that
{u,v} is an edge of G. Where G Is clear from context, we will write simply
“y—y",

Definitions: .
Let G be a graph with vertex set V, and let N = [V|. A layout of G is a
one-to-one mapping, f, from V onto (1,...N}. The bandwidth of f Is defined as
the maximum distance between the images under f of any two vertices that
are connected by an edge of G. That is,

bandwidth(f) = max{f(u)-f(v) | u—v).

The bandwidth of G is defined as the least possible bandwidth for any layout
of G. Thus,

Bandwldth(G) z mm(bandwidth(f) |tisa layout of G).

Problem (Bandwidth Mlnlmlzatlon)

Given an arbitrary graph, G, and a positive lnteger. K, determlne whether
Bandwidth(G) Lk,

Note that the hotion of graph bandwidth is equivalent to the more familiar notion
of matrix bandwidth in that Bandwidth(G) < k iff there exists a permutation matrix P
such that (PCP")U s 0 whenever [i~j| > k, where C is G's connection matrix. For
any particular positive integer k, we can define a restricted version of the
bandwidth minimization problem as follows:

Problem (Bandwldthz k):
Given a graph, G, determine whether 8andwidth(G) £ k.
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Papadimitriou [1976] has shown that the general bandwidth minimization probliem,
in which k is specified in the input, is NP-Complete. The problem was later studied
by Garey, Graham, Johnson, and Knuth [1978], who found a linear-time algorithm for
the the problem ”Bandwkithg 2", and also improved on Papidimitriou's result by
showing the problem for genefal k to be NP-Complete even when G Is restricted to
be a tree with no vertex of degree greater than three. A number of questions are
Jeft open by their work, howevér. One such question is whether there exists a
polynomial-time algorithm for the problem "“Bandwidth g 3%, In this paper, we will
1 which solves the
probiem “Bandwidth 2 k" in polynomial time for any fixed k. Section 2 of this paper

answer this question affirmatively by exhibiting an algorithm

introduces the fundamental concepts and assumptions we will use in describing our
algorithm. In Section 3 the algorithm Is described and its performance is analyzed,
in Section 4 we discuss some modifications of the algorithm to solve related

" problems. Finally, in Section 5, we discuss some remalning open problems.

2 Fundamental Concepts and Assumptions

Throughout the following we will assume that G denotes a graph with vertex set V

2 and that we wish to

and edge set E, that k denotes a particular positive integer,
determine whether G has any layout of bandwidth £ k. We let N denote the
cardinality of V. Note that if G is not connected then G has a ldyout of bandwidth £
k iff each of Its components has such a layout. Aiso, it Is clearly impossible for G to
have such a léyout if G has any vertex of degree 2k or greater. We therefore
assume, without loss of generality, that G is a connected graph having no vertex of
degree greater than or equal to 2k. Note that an arbitrary graph can be partitioned
Into its connected components by depth-first search in O(max(n,e)) time, where n is

the number of vertices and e is the number ot edges.’3 and that this is O(n) if a

‘Meu correctly, & class of algorithms, one for each value of k.
thon using the "big-oh" notation, we will regard k 83 fixed and therefore omit factors that depend only on k.

~ 3gqe, tor example, Ahd, Hopcroft, and Ulkman [ 1974, Chapter 5).
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fixed bound Is given on the degree of any vertex. Moreover, an obvious
modification to the depth-first search algorithm allows it to detect the presence of a
vertex with degree greater than a fixed bound in time which is proportional only to

the number of vertices and not to the number of edges.
We now Introduce the key notion of a partial layout,

Definitions:
A partial layout of G is a one-to-one function, f, from some subset of V onto
{1,....M}, for some M such that 0 £ M S N. We say that f is feasible if it can be
extended to a (total) layout, g, such that bandwidth(g) € k. The bandwidth of
f is the maximum distance between the images of any two edge-connected
_ vertices of G which are in the domain of f. If u—v and u is in the domain of f
and g Is not, then the edge (u,v} is said to be dangling from f.

Consider a partial layout, f, of size M. Clearly, f cannot possibly be feasible
uniess

1. bandwidth(f) € k, and

2. whenever u and v are vertices of G such that f(u) < M-k and u—v, v is
also In the domain of f. '
If f satisfies both these conditions, then f is said to be a plausible partial layout.
The sequence (f"(max(M'kﬂ.1),...,f_'1(M)), taken together with the set of dangling
edges of {, is called thea_c_i_i.\gwof f. We now come to the theorem on which
our principal algorithm depends.

Theorem 2.1: :
Let f and g be two plsusible partial layouts of G having ldentical sctive
regions. Then,

1. f and g have identical domains, and
2. tis feasible Iff g is feasible.
Proof:

Since G is connected, the domains of f and g must each consist precisely of
those vertices which are path-connected to vertices in the active region by
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paths not including any dangling edges. Thus, (1) holds. To see that (2) holds,
we need only note that any assignment of the remaining vertices which
extends either f or g to a total layout of bandwidth £ k must aiso extend the
other to such a layout. O

Finally, we define the notion of a successor of a plausible partial layout (or active

region), which will be necessary to explain our algorithms.

Definition:
Let f be a plausible partial layout of G, Then a successor of f is a plausible
partial layout, g, which extends f by precisely one element. In this case, the
active region of g is also said to be a successor of the active region of f. We
also say that (the active region of) f is a predecessor of (the active region of)

3 The Algorithm

Theorem 2.1 allows us to say that two plausible partial layouts aré equivalent if
they have identical active regions. The algorithm we present is essentially a
breadth-first search over the space of all the induced equivalence classes of
plausible partial layouts, where each such equivalence class Is uniquely
characterized by active region of its representatives. Alternatively, we may think
of the algorithm as a dynamic-programming search over the plausible partial layouts.
Each active region consists of at most k vertices and each vertex has no more than
2k edges, each of which may or may not be dangiing. Thus the number of

equivalence classes is bounded above by4

> (¥)22%) = o).
03k

Qur algorithm uses the foliowing two data structures:

1. A (fifo) queue, Q, whose eiements are active regions,

‘Aa we will mention in Section 8, the coefficient on this bound is quite loose,




GRAPH BANDWIDTH RECOGNITION ]

2. An array, A, which contains one element for each possible active
region. Each element, A[r], of A consists of a Boolean flag,
A[r]).examined, telling whether the active region r has already been
considered In the search and a list, A[r].unplaced, of vertices which is
intended to list all vertices NOT in the domain of each plausible partial
layout with active region r.

At the start of our algorithm, Q is Initialized to contain the single element
representing the active region (henceforward denoted $) of the empty partial
layout, ¢. The fiag A[$l.examined is set to TRUE and A{&l.unplaced is initialized to
list all the elements of V. The remaining A[r}.examined are initlally FALSE, and the

remaining A[r].unplaced are uninitialized. The aigorithm now proceeds as follows:

Algorithm B (Bandwidth testing):-

1. Extract an active region, r, from the head of Q.
2. From A[r].unplaced, determine the successors of r.

3. For each successor, s, of r such that A[s]. examlned ls FALSE, perform
the following steps:

a. Set A{s]).examined to TRUE.

b. Compute A[s].unplaced by deleting the last vertex of s from
Alr]. unplaced.

c. It Afr). unplaced is the empty set, then halt asserting that
Bandwidth(G) < k.

d. Insert s at the end of Q.

4. If Qs empty, then hait asserting that Bondwldth(e) > k. Otherwise, go
to Step 1.

. The space réqulted by this algorithm is clearly O(N'“‘). To determine the running

time, we note first that since there are O(N") possible active regions, each of Steps
' 1 through 4 will be executed O(N") times. The individual executions of Steps 1 and
4 each take only constant time, so the contribution of these steps to the total
running time of the algorithm is O(N"). ~Since any active region, r, has at most N
successors (zero or one for each element of A{r).unplaced), each execution of Step
2 takes O(N) time. The contribution of Step 2 to the total execution time is
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therefore O(Nk”). Determining the contribution of Step 3 is (a little) trickier.
Ouring a single execution of Step 3, Steps 3.a through 3.d may be executed as
many as N times, and the amount of computation in Step 3.b may be §(N). Thus It
appears possible that Step 3 may contribute B(Nk*z) to the total execution time. If
we look more carefully, however, we see that 3.a through 3.d are execuled at most
once for each active region. Thus the total contribution of Step.a is O(Nk”).

Adding the contributions of all the steps gives us the following result.

Theorem 3.1:
Let k be any positive integer. Then there Is an algorithm which solves the
problem "Bandwidth z k" using O(Nk”) time and O(Nk”) space. -

Proof:
To test the bandwidth of G, we first perform an O(N)-time depth first search
which either

(1) determines that G has some vertex of degree grealer than 2k, or

(2) partitions G into connected corhponents none of which have any
‘vertex of deygree greater than 2k.

In case (1), we know immediately that Bandwidth(G) 2 k. In case (2), we apply
Algorithm B to the connected components of G. O

While Algorlghm B will tell us whether G has a layout of bandwidth € k, it does not
actuslly produce such a layout. .ln order to allow such a layout to be recovered, we
may assoclate with each active region, s, an additional ﬁeld, A[s]).predecessor.
When s Is appended to Q In Step &.f., we make A[s].predecessor point to a

predecessor of s (namely the r we chose in Step 1).5 If the algorithm finds an

active region, t, such that A[t].unplaced is empty, it is a simple matter to recover a -

layout by tracing back th"rough the predecessor fields.

Note that this pointer noed only name the single vertex (if any) which is conlainedine but not in 3.

S
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4 Modifications for Related Problems

Another question left open by Garey, Graham, Johnson, and Knuth [1978] Is
whether there exists a polynomiai-time algorithm to count the layouts of a graph
having bandwidth < k, even for k = 2. We now give an affirmative answer to a
closely related question by exhibiting a class of polynomial-time algorithms (one for
each positive integer k) for determining the number of bandwidth < k layouts of any

connected gmph.6

Our algorithm for enumerating fayouts of bandwidth £ k is a slightly modified form
of Algorithm B. The data structures are the same as those for Algorithm B, with the
following additions:

1. Each entry, A[r], of A has a third field, A[r].count, which will hold the

number of (so far discovered) plausible partial layouts whose active
. reglonisr.

2. There Is a varlable, Total, which wlll‘ hold the number of (so far
discovered) layouts of bandwidth < k.

At the start of the algorithm, Total and all the A[r].eount_ are initialized to zero,
except for Al®], which is initialized to 1. The remaining variables are initialized as

" for Algorithm B. We then proceed as follows:

Algorithm E (Enumerate layouts):
1. Extract an active region, r, from the head of Q.
2. From A[r].unplaced, determine the successors of r.
3. For each successor, s, of r perforﬁ the following steps:
a. If -A{s].examined Is TRUE, go to f.
b. Set A[s).examined to TRUE.
c. Compute A[s].unplaced by deleting the last vertex of s from

‘Nou that the number of bandwidth ¢ k layouls of an arbitrary graph is not uniquely determined by the numbers
of bandwidth ¢k layouts of its connected components becsuss the topologies of the componems impose
constraints on how the various layouts may overisp. The algorithms cannot be spplied directly to non-comnected
graphs because they depend on Theorem 2.1.

[ —
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Alr).unplaced.

d. If A[r]unplaced is the empty set, then increase Total by
A[r].count.

e. Insert s at the end of Q.

f. Increase A[s].count by A[r].count.

4. If Qis empty, then halt. Otherwise, go to Step 1.
Study of this algorithm gives us the following resuit:

Theorem 4.1: .
Let k be any positive integer. Then there exists an O(Nk”)—time.
O(Nk”)-spdce algorithm which, given any connected graph, G, computes the
number of layouts of G having bandwidth < k.

Proof:

We claim that Algorithm E (preceded by a depth-first search to ensure that no
vertex of G has degree greater than 2k) has the desired properties. By an
analysis similar to that for Algorithm B, Algorithm E will run in O(Nk”) time. We
must now show that it correctly counts the layouts of bandwidth € k. To do
this, it suffices to show that by the time that any plausible partial layout, r, is
selected in Step 1, A[r].count contains the total number of plausible partial
layoufs whose active region is r. This in turn may be shown inductively if we
can only show that no active region, r, Is chosen in Step 1 until every
predecessor of r has been chosen. This last follows at once from the fact
(which may be established by induction) that the active reglons proceed
through the queue in non-decreasing order of their iengths, where the length
of an active region, r, is defined to be the number of vertices in the domain of
any plausible partial layout whose active regionisr. O

We may view Bandwidth Minimization as the problem of finding a layout with

minimax edge length. We will now look at-the corresponding minisum problem.

Definition: S
Let G be a graph with edge set E, and let f be a layout of G. Then the total
edge length of f is given by the sum ’




T A s i it SO - T —

GRAPH BANOWIDTH RECOGNITION _ * ]

2 -1V
{u,v)}€E

where each edge, {u,v), contributes precisely once to the sum (rather than
once as u—v and once as v—u).

e e e e e

Problem: (Optimail Linear Arrangement)
Given a graph, G, and an integer, t, determine whether there is a layout of G
having total edge less than or equal to t. )

The Optimal Linear Arrangement (O.L.A.) problem was found to be NP-Complete by
Garey, Johnson, and Stockmeyer [1976]. However, Shamos [1979] has pointed out
that the methods of the present work can be used to provide polynomial-time
algorithms for a class of restricted versions of Q.L.AA. For every positive integer, k,
we define a restriction of O.L.A. as follows:

Problem: (O.L.A. for bandwidth £ k)
Given & graph, G, determine the minimal total edge length of any layout of G }
having bandwidth S k or determine that no such layout exists. ]

Applying the methods used above, we obtain the following result.

Theorem 4.2: : o :
Let k be any positive integer. Then there exists an algorithm which solves
" O.LA. for bandwidth < k in O(N*') time and O(N%*') space.

Proof: :
An algorithm hdvmg the desired properties when applied to connected graphs
with no vertex having degree greater than 2k may be constructed by & slight
modification of":Algorlthm E: instead of maintalnlng with each active region a
count of the p'ar,.gial layouts having that active region, we maintain an indication

of the minimum sum of the lengths of all edges whose endpoints have are in
the domains of all plausible partial layouts having that active region. The
detells are left to the reader. For arbitrary graphs we first perform a -
depth-first search which either detects the presence of a vertex with degree
greater than 2k (implying that Bandwidth(G) 2 k) or partitions G into Iits

i
[

A
i
7
i
]
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connected components, taking linear time in either case. We then compute the
minimal total edge length for G by finding and summing the minimal total edge
lengths for the connected components. O

We note that the previous result remains valid if we consider edge weighted graphs
and the "total edge length" is taken as a weighted sum. For connected graphs, we
can also use the method of Algorithm E to obtain a count of the layouts with minimal

total edge length for bandwidth < k.

Finally, all the previous resuits extend to "directed" versions of Bandwidth
Minimization and O.L.A., in which G is a directed graph and a layout, {, |s acceptable

only if f(u) < f(v) whenever (u,v) is an edge of a.t

S Open Problems

The most obvious problem left open by this work s %hat of Improving the

performance of Algorithm B. Although the expense of this algorithm is “only

polynomial" in the size of the examined graph it is still éuffic§ently expensive
(particularly in terms of space) to render it impractical for all but the smallest cases
(consider, for example, determining whether Bandwidth(G) € 5, where G is a graph of
forty vertices). The fact that Garey, Graham, Johnson, and Knuth {1978] have a
linear-time algorithm for “Bandwidth(G) z 2", while Algorithm B takes cubic time for
the same problem offers some hope that the degree of the polynomial can be
reduced for higher values of k as well. Ind:ed, it is conceivable (even if P # NP)
that there are linear algorithms for all values of k, with coefficients growing

exponentially in k. .

One approach to improving the performance is to attempt to reduce the number of
active _reglons examined, and this can indeed be done to some extent. For example,

we may prune the search by noting that, while a plausible partial layout ma.y have

0(&2) dangling edges, such a partial layout cannot actuslly be feasible if those

edges lead to more than k distinct vertices. Unfortunately, graphs of the form

’A goo'd starting point for the reader who is interested in learning more about Bandwidth, O.L.A., and their
varistions is Appendix A1 of Garey and Johnson [1979).

T
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supply an existence proof that the number of equivalence classes of plausible
partial layouts of bandwidth € k can in fact be 0(Nk).

In Algorithm B, we reduce the search space from the set of all plausibie partial

layouts to the much smaller set of equivalence classes of partial layouts. To look at

"It another way, given two partial layouts, f and g, if we recognize (by equality of

active regions) that f is feasible iff g is feasible, then we feel free to search for

completions of only one of the partial layouts. The algorithm of Garey, Graham,

. Johnson, and Knuth cuts down the search space by methods which are similar but

more sophisticated. In particular, they can avoid searching for completions of a
partial Iayout.8 f, by choosing to search for completions of a layout, g, such that g Is

feaslble whenever f is feasible, but not necessarily only when f is feasible.

it Is Interesting to note that "worst-case" numbers of feasible active reglons
seem to arise precisely in circumstances where large pieces of the graph can be
laid out in bandwidth much less than k. We define a maximal graph of size N and
bandwidth k as a graph whose edge set is {{v;.v}} | |i-jisk}, where {v;| 1SISN} is the
edge set.9 The algorithm of Garey, Graham, Johnson, and Knuth relies heavily on the
fact that if all the even numbered vertices or all the odd numbered vertices are
deleted from a maximal graph of bandwidth 2, the induced graph on the remiinlng
vertices is a maximal graph of bandwidth 1. For testing higher bandwidths it is
possible that similar use may be made of the fact that deleting every k-th vertex

~ from a maximal graph of bandwidth k leaves a maximal graph of bandwidth k-1.

Another potentially fruitful course of investigation would be to look for efficient
algorithms for approximate bandwidth minimization. For example, given a graph, G,
we may wish to produce a layout for G whose bandwidth is no more than, say, twice

.h their terminology, a partial fayout of G is a map from a subset of the vertices of G to an arditrary set of

integers.

'Noto that a graph of N vertices has bendwidth < k iff it is isomorphic to a subgraph of a maximal graph of size
N and bandwidth k.
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the minimum possible. To the author's knowldge it has not yet been determined
whether this problem (when phrased as a language recognition problem) Is

NP-Complete.
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